Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
medRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38529492

RESUMEN

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

2.
ACS Omega ; 8(45): 42045-42061, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024675

RESUMEN

Phytochemicals are promising therapeutics for various neurodegenerative disorders, including Parkinson's disease (PD). However, their efficacy, pharmacokinetic properties, and penetration across the blood-brain barrier can be improved using delivery systems such as nanoparticles. We reviewed recently published work in which nanoparticles were used to deliver phytochemicals toward PD treatment. The studies show that nanoparticles not only improve the pharmacological effect of the phytochemicals but also enable targeting to the brain and crossing of the blood-brain barrier. Various ligands were added to the nanoparticles to improve blood-brain barrier transportation. The promising findings from the published studies reveal that more research into nanophytomedicine approaches as therapeutic targets for PD is warranted, especially since they have the potential to protect against key features of PD, including α-synuclein aggregation, mitochondrial dysfunction, and dopaminergic neuronal death. Furthermore, future directions should involve smart designs to tailor nanoparticles for improved therapeutic delivery by modifying their features, such as architecture, surface and material properties, targeting ligands, and responsiveness.

3.
PLoS One ; 18(10): e0292180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788254

RESUMEN

Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder, currently affecting ~7 million people worldwide. PD is clinically and genetically heterogeneous, with at least 10% of all cases explained by a monogenic cause or strong genetic risk factor. However, the vast majority of our present data on monogenic PD is based on the investigation of patients of European White ancestry, leaving a large knowledge gap on monogenic PD in underrepresented populations. Gene-targeted therapies are being developed at a fast pace and have started entering clinical trials. In light of these developments, building a global network of centers working on monogenic PD, fostering collaborative research, and establishing a clinical trial-ready cohort is imperative. Based on a systematic review of the English literature on monogenic PD and a successful team science approach, we have built up a network of 59 sites worldwide and have collected information on the availability of data, biomaterials, and facilities. To enable access to this resource and to foster collaboration across centers, as well as between academia and industry, we have developed an interactive map and online tool allowing for a quick overview of available resources, along with an option to filter for specific items of interest. This initiative is currently being merged with the Global Parkinson's Genetics Program (GP2), which will attract additional centers with a focus on underrepresented sites. This growing resource and tool will facilitate collaborative research and impact the development and testing of new therapies for monogenic and potentially for idiopathic PD patients.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Cuidados Paliativos
4.
NPJ Parkinsons Dis ; 9(1): 110, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443150

RESUMEN

The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.

5.
Mov Disord ; 38(8): 1527-1535, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37310233

RESUMEN

BACKGROUND: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. OBJECTIVES: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. METHODS: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. RESULTS: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. CONCLUSIONS: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/psicología , Pruebas Genéticas , Consejo
6.
Mov Disord ; 38(8): 1384-1396, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365908

RESUMEN

Genetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Pruebas Genéticas
7.
Brain ; 146(4): 1496-1510, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36073231

RESUMEN

The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration.


Asunto(s)
Discapacidad Intelectual , Trastornos Parkinsonianos , Animales , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Discapacidad Intelectual/genética , Trastornos Parkinsonianos/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
8.
Front Aging Neurosci ; 14: 1002777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533174

RESUMEN

Parkinson's disease (PD), the fastest-growing neurological disorder globally, has a complex etiology. A previous study by our group identified the p.G849D variant in neurexin 2 (NRXN2), encoding the synaptic protein, NRXN2α, as a possible causal variant of PD. Therefore, we aimed to perform functional studies using proteomics in an attempt to understand the biological pathways affected by the variant. We hypothesized that this may reveal insight into the pathobiology of PD. Wild-type and mutant NRXN2α plasmids were transfected into SH-SY5Y cells. Thereafter, total protein was extracted and prepared for mass spectrometry using a Thermo Scientific Fusion mass spectrometer equipped with a Nanospray Flex ionization source. The data were then interrogated against the UniProt H. sapiens database and afterward, pathway and enrichment analyses were performed using in silico tools. Overexpression of the wild-type protein led to the enrichment of proteins involved in neurodegenerative diseases, while overexpression of the mutant protein led to the decline of proteins involved in ribosomal functioning. Thus, we concluded that the wild-type NRXN2α may be involved in pathways related to the development of neurodegenerative disorders, and that biological processes related to the ribosome, transcription, and tRNA, specifically at the synapse, could be an important mechanism in PD. Future studies targeting translation at the synapse in PD could therefore provide further information on the pathobiology of the disease.

9.
Front Pediatr ; 10: 1033299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467485

RESUMEN

Paediatric neuromuscular diseases are under-recognised and under-diagnosed in Africa, especially those of genetic origin. This may be attributable to various factors, inclusive of socioeconomic barriers, high burden of communicable and non-communicable diseases, resource constraints, lack of expertise in specialised fields and paucity of genetic testing facilities and biobanks in the African population, making access to and interpretation of results more challenging. As new treatments become available that are effective for specific sub-phenotypes, it is even more important to confirm a genetic diagnosis for affected children to be eligible for drug trials and potential treatments. This perspective article aims to create awareness of the major neuromuscular diseases clinically diagnosed in the South African paediatric populations, as well as the current challenges and possible solutions. With this in mind, we introduce a multi-centred research platform (ICGNMD), which aims to address the limited knowledge on NMD aetiology and to improve genetic diagnostic capacities in South African and other African populations.

10.
J Neural Transm (Vienna) ; 129(12): 1435-1446, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242655

RESUMEN

Parkinson's disease (PD) is a neurodegenerative movement disorder, affecting 1-2% of the human population over 65. A previous study by our group identified a p.G849D variant in neurexin 2α (NRXN2) co-segregating with PD, prompting validation of its role using experimental methods. This novel variant had been found in a South African family with autosomal dominant PD. NRXN2α is an essential synaptic maintenance protein with multiple functional roles at the synaptic cleft. The aim of the present study was to investigate the potential role of the translated protein NRXN2α and the observed mutant in PD by performing functional studies in an in vitro model. Wild-type and mutant NRXN2α plasmids were transfected into SH-SY5Y cells to assess the effect of the mutant on cell viability and apoptosis [(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay; ApoTox-Glo™ Triplex Assay)], mitochondrial membrane potential (MMP; MitoProbe™ JC-1 Assay), mitochondrial network analysis (MitoTracker®) and reactive oxygen species (ROS; ROS-Glo™ H2O2 Assay). Cells transfected with the mutant NRXN2α plasmid showed decreased cell viability and MMP. They also exhibited increased ROS production. However, these cells showed no changes in mitochondrial fragmentation. Our findings led us to speculate that the p.G849D variant may be involved in a toxic feedback loop leading to neuronal death in PD. Mitochondrial dysfunction and synaptic dysfunction have been linked to PD. Therefore, findings from this exploratory study are in line with previous studies connecting these two processes and warrants further investigation into the role of this variant in other cellular and animal models.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Animales , Humanos , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Línea Celular Tumoral , Apoptosis
11.
Front Aging Neurosci ; 14: 921412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912088

RESUMEN

Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson's disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur "out-of-place" on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson's Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.

12.
Mov Disord ; 37(8): 1593-1604, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867623

RESUMEN

BACKGROUND: Human genetics research lacks diversity; over 80% of genome-wide association studies have been conducted on individuals of European ancestry. In addition to limiting insights regarding disease mechanisms, disproportionate representation can create disparities preventing equitable implementation of personalized medicine. OBJECTIVE: This systematic review provides an overview of research involving Parkinson's disease (PD) genetics in underrepresented populations (URP) and sets a baseline to measure the future impact of current efforts in those populations. METHODS: We searched PubMed and EMBASE until October 2021 using search strings for "PD," "genetics," the main "URP," and and the countries in Latin America, Caribbean, Africa, Asia, and Oceania (excluding Australia and New Zealand). Inclusion criteria were original studies, written in English, reporting genetic results on PD from non-European populations. Two levels of independent reviewers identified and extracted information. RESULTS: We observed imbalances in PD genetic studies among URPs. Asian participants from Greater China were described in the majority of the articles published (57%), but other populations were less well studied; for example, Blacks were represented in just 4.0% of the publications. Also, although idiopathic PD was more studied than monogenic forms of the disease, most studies analyzed a limited number of genetic variants. We identified just nine studies using a genome-wide approach published up to 2021, including URPs. CONCLUSION: This review provides insight into the significant lack of population diversity in PD research highlighting the immediate need for better representation. The Global Parkinson's Genetics Program (GP2) and similar initiatives aim to impact research in URPs, and the early metrics presented here can be used to measure progress in the field of PD genetics in the future. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , China , Predicción , Estudio de Asociación del Genoma Completo , Humanos , Nueva Zelanda , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética
13.
Mol Biol Cell ; 33(9): vo2, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35862495

RESUMEN

The African Society of Human Genetics (AfSHG) was formed to provide a forum for human genetics and genomics scientists in Africa to interact, network, and collaborate. This is critical to facilitate development of solutions to the public health burden of many rare and common diseases across the continent. AfSHG fully supports the Black Lives Matter movement, which is dedicated to fighting racism and ensuring that society values the lives and humanity of Black people. The AfSHG would like to add its "voice" to the public outcry against racism sparked by George Floyd's death and to declare its commitment to ensuring that injustice and systematic racism, as well as abuse and exploitation of Africans and their biological material, are no longer tolerated. This is particularly relevant now as African genomic variation is poised to make significant contributions across several disciplines including ancestry, personalized medicine, and novel drug discovery. "Black Lives Matter and Black Research Matters" is AfSHG's call for the global community to support halting, and reversing, the perpetuation of exploitation of African people through neocolonial malpractices in genomic research. We also propose five key ways to curb racism in science, so that we can move forward together, with a common humanity, collectively embracing scientific endeavors.


Asunto(s)
Racismo , África , Genómica , Genética Humana , Humanos , Racismo/prevención & control
14.
Parkinsonism Relat Disord ; 101: 1-5, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728366

RESUMEN

INTRODUCTION: Altered levels of mitochondrial DNA copy number (mtDNA-CN) have been proposed as a proxy for mitochondrial dysfunction. Following reports of mtDNA depletion in the blood and substantia nigra of Parkinson's disease (PD) cases, mtDNA-CN was also suggested as a possible biomarker for PD. Therefore, this study aimed to investigate whether blood mtDNA-CN levels of African ancestry PD cases would be altered compared to controls, as previously reported in individuals of Asian and European ancestry. METHODS: Droplet digital polymerase chain reaction (ddPCR) was performed to quantify blood-derived mtDNA-CN levels as a ratio of a mitochondrial gene (MT-TL1) to a nuclear gene (B2M) in 72 PD cases and 79 controls of African ancestry (i.e. individuals with African mtDNA haplogroups) from South Africa. mtDNA-CN per cell was calculated by the formula 2 × MT-TL1/B2M. RESULTS: Accepting study limitations, we report significantly higher mtDNA-CN in whole blood of our PD cases compared to controls (median difference = 81 copies/cell), independent of age (95% CI [64, 98]; P < 0.001]). These findings contradict previous reports of mtDNA depletion in PD cases. CONCLUSIONS: We caution that the observed differences in mtDNA-CN between the present and past studies may be a result of unaccounted-for factors and variability in study designs. Consequently, larger well-designed investigations may help determine whether mtDNA-CN is consistently altered in the blood of PD cases across different ancestries and whether it can serve as a viable biomarker for PD.


Asunto(s)
Variaciones en el Número de Copia de ADN , Enfermedad de Parkinson , Biomarcadores , Población Negra/genética , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Humanos , Enfermedad de Parkinson/genética
15.
Front Genet ; 13: 781816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299952

RESUMEN

Parkinson's disease is a neurodegenerative disorder with a heterogeneous genetic etiology. The advent of next-generation sequencing (NGS) technologies has aided novel gene discovery in several complex diseases, including PD. This Perspective article aimed to explore the use of NGS approaches to identify novel loci in familial PD, and to consider their current relevance. A total of 17 studies, spanning various populations (including Asian, Middle Eastern and European ancestry), were identified. All the studies used whole-exome sequencing (WES), with only one study incorporating both WES and whole-genome sequencing. It is worth noting how additional genetic analyses (including linkage analysis, haplotyping and homozygosity mapping) were incorporated to enhance the efficacy of some studies. Also, the use of consanguineous families and the specific search for de novo mutations appeared to facilitate the finding of causal mutations. Across the studies, similarities and differences in downstream analysis methods and the types of bioinformatic tools used, were observed. Although these studies serve as a practical guide for novel gene discovery in familial PD, these approaches have not significantly resolved the "missing heritability" of PD. We speculate that what is needed is the use of third-generation sequencing technologies to identify complex genomic rearrangements and new sequence variation, missed with existing methods. Additionally, the study of ancestrally diverse populations (in particular those of Black African ancestry), with the concomitant optimization and tailoring of sequencing and analytic workflows to these populations, are critical. Only then, will this pave the way for exciting new discoveries in the field.

16.
Discov Ment Health ; 2(1): 6, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-37861850

RESUMEN

Evidence suggests that shared pathophysiological mechanisms in neuropsychiatric disorders (NPDs) may contribute to risk and resilience. We used single-gene and network-level transcriptomic approaches to investigate shared and disorder-specific processes underlying posttraumatic stress disorder (PTSD), Parkinson's disease (PD) and schizophrenia in a South African sample. RNA-seq was performed on blood obtained from cases and controls from each cohort. Gene expression and weighted gene correlation network analyses (WGCNA) were performed using DESeq2 and CEMiTool, respectively. Significant differences in gene expression were limited to the PTSD cohort. However, WGCNA implicated, amongst others, ribosomal expression, inflammation and ubiquitination as key players in the NPDs under investigation. Differential expression in ribosomal-related pathways was observed in the PTSD and PD cohorts, and focal adhesion and extracellular matrix pathways were implicated in PD and schizophrenia. We propose that, despite different phenotypic presentations, core transdiagnostic mechanisms may play important roles in the molecular aetiology of NPDs.

17.
Mov Disord ; 37(1): 230-232, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676912

RESUMEN

Parkinson's disease (PD) incidence is increasing in sub-Saharan Africa. We recruited 687 individuals with PD from different ancestral groups across South Africa. More Afrikaner Europeans had early-onset PD than other ancestral groups. More men had PD than women, with a younger age at onset for men (56 years).


Asunto(s)
Enfermedad de Parkinson , Edad de Inicio , Femenino , Humanos , Masculino , Enfermedad de Parkinson/epidemiología , Sudáfrica/epidemiología , Población Blanca
18.
Open Biol ; 11(10): 210091, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610269

RESUMEN

Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.


Asunto(s)
Trastornos Mentales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Familia de Multigenes , Proteínas del Tejido Nervioso/química , Moléculas de Adhesión de Célula Nerviosa/química , Mapas de Interacción de Proteínas
19.
Mol Neurobiol ; 58(11): 5920-5936, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34426907

RESUMEN

Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.


Asunto(s)
Curcuma , Hierro/fisiología , Melaninas/fisiología , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , alfa-Sinucleína/fisiología , Animales , Autofagia , Química Encefálica , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Retroalimentación Fisiológica , Ferroptosis , Homeostasis , Humanos , Hierro/análisis , Ratones , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Fitoterapia , Agregación Patológica de Proteínas , Sustancia Negra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...